Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Infect Control Hosp Epidemiol ; : 1-10, 2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-2323929

ABSTRACT

The risk factors of environmental contamination by SARS-CoV-2 were unknown. We analyzed 1,320 environmental samples obtained from COVID-19 patients for 1 year. The risk factors of contamination of COVID-19 patients' surrounding environment were higher viral load in the respiratory tract and shorter duration from symptom onset to sample collection.

2.
Viruses ; 15(4)2023 04 14.
Article in English | MEDLINE | ID: covidwho-2297839

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a novel infectious respiratory disease caused by SARS-CoV-2. We evaluated the efficacy of a plant-based human recombinant angiotensin-converting enzyme 2 (hrACE2) and hrACE2-foldon (hrACE2-Fd) protein against COVID-19. In addition, we analyzed the antiviral activity of hrACE2 and hrACE2-Fd against SARS-CoV-2 using real-time reverse-transcription PCR and plaque assays. The therapeutic efficacy was detected using the Golden Syrian hamster model infected with SARS-CoV-2. Both hrACE2 and hrACE2-Fd inhibited SARS-CoV-2 by 50% at concentrations below the maximum plasma concentration, with EC50 of 5.8 µg/mL and 6.2 µg/mL, respectively. The hrACE2 and hrACE2-Fd injection groups showed a tendency for decreased viral titers in nasal turbinate tissues on day 3 after virus inoculation; however, this decrease was not detectable in lung tissues. Histopathological examination on day 9 after virus inoculation showed continued inflammation in the SARS-CoV-2 infection group, whereas decreased inflammation was observed in both the hrACE2 and hrACE2-Fd injection groups. No significant changes were observed at other time points. In conclusion, the potential therapeutic efficacy of plant-based proteins, hrACE2 and hrACE2-Fd, against COVID-19 was confirmed in a SARS-CoV-2-inoculated Golden Syrian hamster model. Further preclinical studies on primates and humans are necessary to obtain additional evidence and determine the effectiveness of these therapies.


Subject(s)
COVID-19 , Cricetinae , Animals , Humans , Mesocricetus , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Inflammation
3.
Microbiol Spectr ; : e0307622, 2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2268090

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the ongoing coronavirus disease 2019 (COVID-19) pandemic. Contrasting studies on the omicron variant have demonstrated higher viral loads in different clinical specimens, which is consistent with its high transmissibility. We investigated the viral load in clinical specimens that were infected with the SARS-CoV-2 wild-type, delta, and omicron variants, and we analyzed the diagnostic accuracy of upper and lower respiratory specimens for these variants. We performed nested reverse transcription (RT)-polymerase chain reaction (PCR), targeting the spike gene and sequencing for variant classification. RT-PCR was performed using upper and lower respiratory specimens, including saliva from 78 COVID-19 patients (wild-type, delta, and omicron variants). A comparison of the sensitivity and specificity, using the area under the receiver operating characteristic curve (AUC) values from the N gene, showed that the omicron variant saliva samples had a higher sensitivity (AUC = 1.000) than did the delta (AUC = 0.875) and the wild-type (AUC = 0.878) variant samples. The sensitivity of the omicron saliva samples was greater than that of the wild-type nasopharynx and sputum samples (P < 0.001). The viral loads of the saliva samples containing the wild-type, delta, and omicron variants were 8.18 × 105, 2.77 × 106, and 5.69 × 105, respectively, which did not differ significantly (P = 0.610). Statistically significant differences were not observed in the saliva viral loads between vaccinated and nonvaccinated patients who were infected with the omicron variant (P = 0.120). In conclusion, omicron saliva samples had higher sensitivity than did wild-type and delta samples, and the viral load did not significantly differ between vaccinated and nonvaccinated patients. Further research is necessary to elucidate the mechanisms underlying the sensitivity differences. IMPORTANCE Owing to the vast heterogeneity of the studies focused on the correlation between the SARS-CoV-2 omicron variant and COVID-19, accurate comparisons of the specificity and sensitivity of samples and associated outcomes are still inconclusive. Moreover, limited information is available on the leading causes of infection and the factors that are associated with the conditions that underlie the spread of infection. Although several studies have contributed important knowledge regarding infectious specimens, the impact of saliva samples remains unknown. This study showed that the sensitivity of the omicron variant saliva samples was higher than that of the wild-type nasopharyngeal and sputum samples. Moreover, neither vaccinated nor nonvaccinated patients who were infected with the omicron variant showed any significant differences in SARS-CoV-2 viral loads. Hence, this study is an important step toward understanding how saliva sample results are correlated with other specimen results, regardless of the vaccination status of patients who are infected with the SARS-CoV-2 omicron variant.

4.
Microorganisms ; 10(8)2022 Aug 02.
Article in English | MEDLINE | ID: covidwho-1969384

ABSTRACT

Coronavirus disease 2019 (COVID-19)-associated coagulopathy is an acute illness characterized by thrombosis with or without hemorrhage after COVID-19 infection. Clinical symptoms of COVID-19-associated coagulopathy can occur at any anatomical site. Various forms of venous thromboembolism, including deep vein thrombosis and pulmonary embolism, are common in acutely ill patients with COVID-19. Laboratory findings, such as D-dimer and platelet counts, can help diagnose COVID-19-associated coagulopathy. Anticoagulation using direct oral anticoagulants and low-molecular-weight heparin is essential for the treatment of COVID-19-associated coagulopathy. Prophylactic anticoagulants are important in preventing COVID-19-associated coagulopathy in patients with severe COVID-19. In particular, the early initiation of prophylactic anticoagulation in patients with COVID-19 can improve survival rates without the risk of serious bleeding events.

5.
Sci Rep ; 12(1): 11354, 2022 07 05.
Article in English | MEDLINE | ID: covidwho-1921708

ABSTRACT

To investigate the specific genomic features and mutation pattern, whole and near-complete SARS-CoV-2 genome sequences were analyzed. Clinical samples were collected from 18 COVID-19-positive patients and subjected to nucleic acid purification. Cell culture was performed to extract various SARS-CoV-2 isolates. Whole-genome analysis was performed using next-generation sequencing, and phylogenetic analyses were conducted to determine genetic diversity of the various SARS-CoV-2 isolates. The next-generation sequencing data identified 8 protein-coding regions with 17 mutated proteins. We identified 51 missense point mutations and deletions in 5' and 3' untranslated regions. The phylogenetic analysis revealed that V and GH are the dominant clades of SARS-CoV-2 circulating in the Gwangju region of South Korea. Moreover, statistical analysis confirmed a significant difference between viral load (P < 0.001) and number of mutations (P < 0.0001) in 2 mutually exclusive SARS-CoV-2 clades which indicates frequent genomic alterations in SARS-CoV-2 in patients with high viral load. Our results provide an in-depth analysis of SARS-COV-2 whole genome which we believe, can shed light in the understanding of SARS-COV-2 pathogenesis and mutation pattern which can aid in the development of prevention methods as well as future research into the pathogenesis of SARS-CoV-2 and therapeutic development.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/genetics , Disease Outbreaks , Genome, Viral , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics
6.
Microbiol Spectr ; 10(1): e0059121, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1691413

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a mild to severe respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The diagnostic accuracy of the Centers for Disease Control and Prevention (CDC)- or World Health Organization (WHO)-recommended real-time PCR (RT-qPCR) primers in clinical practice remains unproven. We conducted a prospective study on the accuracy of RT-qPCR using an in-house-designed primer set (iNP) targeting the nucleocapsid protein as well as various recommended and commercial primers. The accuracy was assessed by culturing or seroconversion. We enrolled 12 confirmed COVID-19 patients with a total of 590 clinical samples. When a cutoff value of the cycle threshold (Ct) was set to 35, RT-qPCRs with WHO RdRp primers and CDC N1, N2, and N3 primers showed sensitivity of 42.1% to 63.2% and specificity of 90.5% to 100% in sputum, and sensitivity of 65.2% to 69.6% and specificity of 65.2% to 69.6% in nasopharyngeal samples. The sensitivity and specificity of iNP RT-qPCR in sputum and nasopharyngeal samples were 94.8%/100% and 69.6%/100%, respectively. Sputum testing had the highest sensitivity, followed by nasopharyngeal testing (P = 0.0193); self-collected saliva samples yielded better characteristics than oropharyngeal samples (P = 0.0032). Our results suggest that iNP RT-qPCR has better sensitivity and specificity than RT-PCR with WHO (P < 0.0001) or CDC (N1: P = 0.0012, N2: P = 0.0013, N3: P = 0.0012) primers. Sputum RT-qPCR analysis has the highest sensitivity, followed by nasopharyngeal, saliva, and oropharyngeal assays. Our study suggests that considerable improvement is needed for the RT-qPCR WHO and CDC primer sets for detecting SARS-CoV-2. IMPORTANCE Numerous research campaigns have addressed the vast majority of clinical and diagnostic specificity and sensitivity of various primer sets of SARS-CoV2 viral detection. Despite the impressive progress made to resolve the pandemic, there is still a need for continuous and active improvement of primers used for diagnosis in clinical practice. Our study significantly exceeds the scale of previously published research on the specificity and sensitivity of different primers comparing with different specimens and is the most comprehensive to date in terms of constant monitoring of primer sets of current usage. Henceforth, our results suggest that sputum samples sensitivity is the highest, followed by nasopharyngeal, saliva, and oropharyngeal samples. The CDC recommends the use of oropharyngeal specimens, leading to certain discrepancy between the guidelines set forth by the CDC and IDSA. We proved that the oropharyngeal samples demonstrated the lowest sensitivity for the detection of SARS-CoV-2.


Subject(s)
COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/standards , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/virology , Cross Reactions , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Oropharynx/virology , SARS-CoV-2/genetics , Saliva/virology , Sensitivity and Specificity , Sputum/virology , Viral Load , Young Adult
7.
Front Microbiol ; 12: 718497, 2021.
Article in English | MEDLINE | ID: covidwho-1556178

ABSTRACT

Background: Rapid identification and effective isolation are crucial for curbing the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To meet this requirement, antigen-detection rapid diagnostic tests (Ag-RDTs) are essential. Methods: Between February 2020 and August 2020 we performed a cohort study of patients with confirmed COVID-19. The clinical performance of Ag rapid fluorescence immunoassay (FIA) and Ag Gold was evaluated and compared in parallel with genomic and subgenomic real-time reverse transcription-polymerase chain reaction (rRT-PCR) and cell culture-based assays. Results: In total, 150 samples were tested. Of these, 63 serial samples were obtained from 11 patients with SARS-CoV-2 and 87 from negative controls. Serial respiratory samples were obtained 2 days prior to symptom onset (-2) up to 25 days post-symptom onset. Overall, for rRT-PCR-positive samples (n = 51), the detection sensitivity of Ag rapid FIA and Ag Gold was 74.5% and 53.49%, respectively, with a specificity of 100%; however, for samples with low cycle threshold (Ct) values, Ag rapid FIA and Ag Gold exhibited a sensitivity of 82.61% (Ct ≤ 30, 5.6 log10RNA copies/mL) and 80% (Ct ≤ 25, 6.9 log10RNA copies/mL), respectively. Despite low analytical sensitivity, both Ag-RDTs detected 100% infection in cell culture-positive samples (n = 15) and were highly effective in distinguishing viable samples from those with subgenomic RNA (66.66%). For both Ag-RDTs, all samples that yielded discordant results (rRT-PCR + ve/Ag-RDT -ve) were also negative by culture. Conclusion: The data suggest that Ag-RDTs reliably detect viable SARS-CoV-2; thus, they may serve as an important tool for rapid detection of potentially infectious individuals.

8.
Microbiol Spectr ; 9(3): e0067221, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1532977

ABSTRACT

Here, we aimed to investigate the diagnostic value of a serological assay using the nucleocapsid protein developed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection and evaluated its performance using three commercial enzyme-linked immunosorbent assays (ELISAs), namely, Standard E 2019 novel coronavirus disease (COVID-19) total antibody (Ab) ELISA (SD Biosensor), and EDI novel coronavirus COVID-19 IgG and IgM ELISA. A recombinant nucleocapsid protein (rNP) was expressed from plants and Escherichia coli for the detection of serum total Ab. We prospectively collected 141 serum samples from 32 patients with reverse transcription-PCR (RT-PCR)-confirmed COVID-19 and determined the sensitivity and dynamics of their total Ab response. Specificity was evaluated using 158 prepandemic samples. To validate the assays, we evaluated the performance using two different cutoff values. The sensitivity and specificity for each assay were as follows: 92.91% and 94.30% (plant-rNP), 83.69% and 98.73% (SD Biosensor), 75.89% and 98.10% (E. coli-rNP), 76.47% and 100% (EDI-IgG), and 80.39% and 80% (EDI-IgM). The plant-based rNP showed the highest sensitivity and area under the receiver operating characteristic (ROC) curve (0.980) among all the assays (P < 0.05). The seroconversion rate for total Ab increased sequentially with disease progression, with a sensitivity of 100% after 10 to 12 days of post-symptom onset (PSO) for both rNP-plant-based and SD Biosensor ELISAs. After 2 weeks of PSO, the seroconversion rates were >80% and 100% for EDI-IgM and EDI-IgG ELISA, respectively. Seroconversion occurred earlier with rNP plant-based ELISA (5 days PSO) compared with E. coli-based (7 days PSO) and SD Biosensor (8 days PSO) ELISA. We determined that rNP produced in plants enables the robust detection of SARS-CoV-2 total Abs. The assay can be used for serosurvey and complementary diagnosis of COVID-19. IMPORTANCE At present, the principal diagnostic methods for COVID-19 comprise the identification of viral nucleic acid by genetic approaches, including PCR-based techniques or next-generation sequencing. However, there is an urgent need for validated serological assays which are crucial for the understanding of immune responses against SARS-CoV-2. In this study, a highly sensitive and specific serological antibody assay was developed for the detection of SARS-CoV-2 with an overall accuracy of 93.56% using a recombinant nucleoprotein expressed from plants.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Nucleocapsid Proteins/immunology , Plant Proteins/immunology , Escherichia coli/genetics , Humans , Immunoglobulin G , Immunoglobulin M , Nucleocapsid , Plant Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Seroconversion , Tobacco/genetics
9.
Microbiol Spectr ; 9(2): e0079321, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1495010

ABSTRACT

To determine the relationship between viral kinetics and severity of disease in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we investigated the viral kinetics and compared the viral loads of patients with coronavirus disease 2019 (COVID-19; the disease caused by SARS-CoV-2), stratified by symptoms and severity. We determined the viral kinetics of 100 patients diagnosed with COVID-19 at Chosun University Hospital between February 2020 and May 2021 and analyzed the differences between asymptomatic, symptomatic, and nonsurvivor patients and between patients who died and those who survived. Clinical samples, comprising respiratory specimens (sputum samples and nasopharynx and oropharynx swab samples), were obtained at different time points of hospitalization, at 1, 3 to 5, 7, 10, 14, and 30 days. SARS-CoV-2 was detected using real-time reverse transcription-PCR (RT-PCR). All three groups, asymptomatic, symptomatic, and deceased patients, had higher numbers of viral copies at symptom onset, and the asymptomatic group had lower numbers of viral copies than the symptomatic or nonsurvivor group. Viral RNA release was detected until 30 days after symptom onset. The virus cleared up earlier in asymptomatic patients than in symptomatic and nonsurvivor patients, and it cleared up earlier in mildly affected patients than in severely affected patients. The cycle threshold values tended to be significantly lower in the group receiving steroids than in the nonsteroid group, even in the low-risk group with a pneumonia severity index of less than 90. The viral loads in patients with COVID-19 were significantly different according to disease severity and steroid use. IMPORTANCE In our study, we analyzed the viral kinetics of COVID-19 patients. Our study reveals differences in viral shedding according to the severity of disease in COVID-19 patients. Viral shedding had a longer duration in severely affected patients, and the cyclic threshold values were lower in the group receiving steroids. This study is expected to be helpful in analyzing the trend of the disease course according to steroid use and severity of SARS-CoV-2 disease.


Subject(s)
COVID-19/pathology , Severity of Illness Index , Viral Load , Virus Shedding , Aged , Aged, 80 and over , Asymptomatic Infections , COVID-19/mortality , Female , Humans , Male , Middle Aged , RNA, Viral/analysis , SARS-CoV-2/isolation & purification
10.
Korean J Intern Med ; 37(1): 201-209, 2022 01.
Article in English | MEDLINE | ID: covidwho-1441243

ABSTRACT

BACKGROUND/AIMS: Coronavirus disease 2019 (COVID-19) is associated with acute respiratory syndrome. The mechanisms underlying the different degrees of pneumonia severity in patients with COVID-19 remain elusive. This study provides evidence that COVID-19 is associated with eosinophil-mediated inflammation. METHODS: We performed a retrospective case series of three patients with laboratory and radiologically confirmed COVID-19 pneumonia admitted to Chosun University Hospital. Demographic and clinical data on inflammatory cell lung infiltration and cytokine levels in patients with COVID-19 were collected. RESULTS: Cytological analysis of sputum, tracheal aspirates, and bronchoalveolar lavage fluid (BALF) samples from all three patients revealed massive infiltration of polymorphonuclear cells (PMNs), such as eosinophils and neutrophils. All sputum and BALF specimens contained high levels of eosinophil cationic proteins. The infiltration of PMNs into the lungs, together with elevated levels of natural killer T (NKT) cells in BALF and peripheral blood samples from patients with severe pneumonia in the acute phase was confirmed by flow cytometry. CONCLUSION: These results suggest that the lungs of COVID-19 patients can exhibit eosinophil-mediated inflammation, together with an elevated NKT cell response, which is associated with COVID-19 pneumonia.


Subject(s)
COVID-19 , Natural Killer T-Cells , Pulmonary Eosinophilia , Bronchoalveolar Lavage Fluid , Eosinophils , Humans , Pulmonary Eosinophilia/diagnosis , Retrospective Studies , SARS-CoV-2
11.
Cell Rep ; 37(1): 109798, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1415262

ABSTRACT

Despite the worldwide effect of the coronavirus disease 2019 (COVID-19) pandemic, the underlying mechanisms of fatal viral pneumonia remain elusive. Here, we show that critical COVID-19 is associated with enhanced eosinophil-mediated inflammation when compared to non-critical cases. In addition, we confirm increased T helper (Th)2-biased adaptive immune responses, accompanying overt complement activation, in the critical group. Moreover, enhanced antibody responses and complement activation are associated with disease pathogenesis as evidenced by formation of immune complexes and membrane attack complexes in airways and vasculature of lung biopsies from six fatal cases, as well as by enhanced hallmark gene set signatures of Fcγ receptor (FcγR) signaling and complement activation in myeloid cells of respiratory specimens from critical COVID-19 patients. These results suggest that SARS-CoV-2 infection may drive specific innate immune responses, including eosinophil-mediated inflammation, and subsequent pulmonary pathogenesis via enhanced Th2-biased immune responses, which might be crucial drivers of critical disease in COVID-19 patients.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Complement System Proteins/immunology , Eosinophils/immunology , Inflammation/immunology , Pneumonia, Viral/immunology , SARS-CoV-2/immunology , Adaptive Immunity , Adult , Aged , Aged, 80 and over , Antigen-Antibody Complex/metabolism , COVID-19/metabolism , COVID-19/virology , Complement Activation , Complement Membrane Attack Complex/metabolism , Eosinophils/virology , Female , Humans , Inflammation/metabolism , Inflammation/virology , Lung Injury/immunology , Lung Injury/pathology , Lung Injury/virology , Male , Middle Aged , Pneumonia, Viral/metabolism , Receptors, IgG/immunology , Receptors, IgG/metabolism , Severity of Illness Index , Signal Transduction , Th2 Cells/immunology , Viral Load , Young Adult
12.
Dis Markers ; 2021: 8821697, 2021.
Article in English | MEDLINE | ID: covidwho-1177613

ABSTRACT

Predictive studies of acute respiratory distress syndrome (ARDS) in patients with coronavirus disease 2019 (COVID-19) are limited. In this study, the predictors of ARDS were investigated and a score that can predict progression to ARDS in patients with COVID-19 pneumonia was developed. All patients who were diagnosed with COVID-19 pneumonia between February 1, 2020, and May 15, 2020, at five university hospitals in Korea were enrolled. Their demographic, clinical, and epidemiological characteristics and the outcomes were collected using the World Health Organization COVID-19 Case Report Form. A logistic regression analysis was performed to determine the predictors for ARDS. The receiver operating characteristic (ROC) curves were constructed for the scoring model. Of the 166 patients with COVID-19 pneumonia, 37 (22.3%) patients developed ARDS. The areas under the curves for the infiltration on a chest X-ray, C-reactive protein, neutrophil/lymphocyte ratio, and age, for prediction of ARDS were 0.91, 0.90, 0.87, and 0.80, respectively (all P < 0.001). The COVID-19 ARDS Prediction Score (CAPS) was constructed using age (≥60 years old), C-reactive protein (≥5 mg/dL), and the infiltration on a chest X-ray (≥22%), with each predictor allocated 1 point. The area under the curve of COVID-19 ARDS prediction score (CAPS) for prediction of ARDS was 0.90 (95% CI 0.86-0.95; P < 0.001). It provided 100% sensitivity and 75% specificity when the CAPS score cutoff value was 2 points. CAPS, which consists of age, C-reactive protein, and the area of infiltration on a chest X-ray, was predictive of the development of ARDS in patients with COVID-19 pneumonia.


Subject(s)
COVID-19/complications , Respiratory Distress Syndrome/etiology , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/epidemiology , Cohort Studies , Female , Humans , Logistic Models , Male , Middle Aged , ROC Curve , Republic of Korea/epidemiology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/epidemiology , Retrospective Studies , Risk Factors , SARS-CoV-2 , Young Adult
13.
J Korean Med Sci ; 36(11): e83, 2021 Mar 22.
Article in English | MEDLINE | ID: covidwho-1146214

ABSTRACT

BACKGROUND: Remdesivir is widely used for the treatment of coronavirus disease 2019 (COVID-19), but controversies regarding its efficacy still remain. METHODS: A retrospective cohort study was conducted to evaluate the effect of remdesivir on clinical and virologic outcomes of severe COVID-19 patients from June to July 2020. Primary clinical endpoints included clinical recovery, additional mechanical ventilator (MV) support, and duration of oxygen or MV support. Viral load reduction by hospital day (HD) 15 was evaluated by calculating changes in cycle threshold (Ct) values. RESULTS: A total of 86 severe COVID-19 patients were evaluated including 48 remdesivir-treated patients. Baseline characteristics were not significantly different between the two groups. Remdesivir was administered an average of 7.42 days from symptom onset. The proportions of clinical recovery of the remdesivir and supportive care group at HD 14 (56.3% and 39.5%) and HD 28 (87.5% and 78.9%) were not statistically different. The proportion of patients requiring MV support by HD 28 was significantly lower in the remdesivir group than in the supportive care group (22.9% vs. 44.7%, P = 0.032), and MV duration was significantly shorter in the remdesivir group (average, 1.97 vs. 5.37 days; P = 0.017). Analysis of upper respiratory tract specimens demonstrated that increases of Ct value from HD 1-5 to 11-15 were significantly greater in the remdesivir group than the supportive care group (average, 10.19 vs. 5.36; P = 0.007), and the slope of the Ct value increase was also significantly steeper in the remdesivir group (average, 5.10 vs. 2.68; P = 0.007). CONCLUSION: The remdesivir group showed clinical and virologic benefit in terms of MV requirement and viral load reduction, supporting remdesivir treatment for severe COVID-19.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/therapeutic use , Aged , Aged, 80 and over , Alanine/therapeutic use , COVID-19/virology , Female , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Respiration, Artificial , Retrospective Studies , Viral Load
14.
Open Forum Infectious Diseases ; 7(Supplement_1):S322-S323, 2020.
Article in English | Oxford Academic | ID: covidwho-1010549
SELECTION OF CITATIONS
SEARCH DETAIL